T5 = split regular triangle in 5 equal area pieces with minimum perimeter
     origin of coordinates:  in the middle of the base
     if there are symmetries in the solution the data are given only for the significant part

border
     (0, sqrt(3)/2)
     (+0.5, 0)
     (-0.5, 0)

vertex 1    (-0.112698566, 0.222814707)
     arc 11 (-2.680870562,           0) 2.577819581  [centercoordinates and radius]
     arc 12 ( 0.984255674, 2.570806239) 2.591596581  [centercoordinates and radius]
     arc 13 (-0.853191404, 1.281977394) 1.292344861  [centercoordinates and radius]

vertex 2    ( 0.066518263, 0.374073562)
     arc 21 = arc 13
     arc 22 (-0.350156845, 0.259535957) 0.432130777  [centercoordinates and radius]
     arc 23 (-0.09745613, -0.254090151) 0.649212794  [centercoordinates and radius]

vertex 3    ( 0.150713834, 0.345817275)
     arc 31 = arc 23
     arc 32 (-2.46682258,            0) 2.640281513  [coordinates on border, straight line]
     arc 23 ( 0.753346991, -0.43880986) 0.989346483  [centercoordinates and radius]

yields the following cutlength
     CL = 1.584470235