T5 = split regular triangle in 5 equal area pieces with minimum perimeter origin of coordinates: in the middle of the base if there are symmetries in the solution the data are given only for the significant part border (0, sqrt(3)/2) (+0.5, 0) (-0.5, 0) vertex 1 (-0.112698566, 0.222814707) arc 11 (-2.680870562, 0) 2.577819581 [centercoordinates and radius] arc 12 ( 0.984255674, 2.570806239) 2.591596581 [centercoordinates and radius] arc 13 (-0.853191404, 1.281977394) 1.292344861 [centercoordinates and radius] vertex 2 ( 0.066518263, 0.374073562) arc 21 = arc 13 arc 22 (-0.350156845, 0.259535957) 0.432130777 [centercoordinates and radius] arc 23 (-0.09745613, -0.254090151) 0.649212794 [centercoordinates and radius] vertex 3 ( 0.150713834, 0.345817275) arc 31 = arc 23 arc 32 (-2.46682258, 0) 2.640281513 [coordinates on border, straight line] arc 23 ( 0.753346991, -0.43880986) 0.989346483 [centercoordinates and radius] yields the following cutlength CL = 1.584470235