HP5 = split a regular heptagon in 5 equal area pieces with minimum perimeter origin of coordinates: in the middle of the pentagon if there are symmetries in the solution the data are given only for the significant part radius of circumscribed circle = 1 border ( 0, -1) ( 0.781831482, -0.623489802) ( 0.974927912, 0.222520934) ( 0.433883739, 0.900968868) (-0.433883739, 0.900968868) (-0.974927912, 0.222520934) (-0.781831482, -0.623489802) ( 0, -1) vertex 1 ( 0, 0.044670085) line ( 0, 0.044670085) to ( 0, 0.900968868) arc 11 ( 1.042191004, 1.849797855) 2.084382008 [centercoordinates and radius] vertex 2 ( 0.215293964, -0.063547289) arc 21 same as arc 11 arc 22 ( -13.36570967, 18.20511168 ) 22.76373345 [centercoordinates and radius] arc 23 ( 2.494439001, 0.201258511) 2.294476893[centercoordinates and radius] yields the following cutlength CL* = 4.511074251 in units of sidelenght: CL=CL*/(2*0.433883739)=5.198482732