HP6 = split a regular heptagon in 6 equal area pieces with minimum perimeter origin of coordinates: in the middle of the pentagon if there are symmetries in the solution the data are given only for the significant part radius of circumscribed circle = 1 border ( 0, -1) ( 0.781831482, -0.623489802) ( 0.974927912, 0.222520934) ( 0.433883739, 0.900968868) (-0.433883739, 0.900968868) (-0.974927912, 0.222520934) (-0.781831482, -0.623489802) ( 0, -1) vertex 1 ( 0, 0.375434241) line ( 0, 0.375434241) to ( 0, 0.900968868) arc 11 (-2.453861183, -3.874778002) 4.907722366 [centercoordinates and radius] vertex 2 ( 0.414683756, 0.107330579) arc 21 same as arc 11 arc 22 ( -0.430272501, 1.984586519) 2.058650272 [centercoordinates and radius] arc 23 ( -1.028268274, 0.253070995) 1.45029336 [centercoordinates and radius] vertex 3 ( 0.290252143, -0.350961075) arc 31 same as arc 23 arc 32 ( -1.936094639, -1.932374038) 2.730839971 [centercoordinates and radius] arc 33 ( 0, 2.727419494) 3.092036395 [centercoordinates and radius] yields the following cutlength CL* = 5.001399439 in units of sidelenght: CL = CL*/(2*0.433883739) = 5.763524867