HP4 = split a regular heptagon in 4 equal area pieces with minimum perimeter origin of coordinates: in the middle of the pentagon if there are symmetries in the solution the data are given only for the significant part radius of circumscribed circle = 1 border ( 0, -1) ( 0.781831482, -0.623489802) ( 0.974927912, 0.222520934) ( 0.433883739, 0.900968868) (-0.433883739, 0.900968868) (-0.974927912, 0.222520934) (-0.781831482, -0.623489802) ( 0, -1) vertex 1 ( 0.120844089, 0.088802936) arc 11 (-38.72210099, -19.64758103) 43.56947595 [centercoordinates and radius] arc 12 ( 2.118862604, -1.211927799) 2.384109568 [centercoordinates and radius] arc 13 ( 0, -2.168385282) 2.260420746 [centercoordinates and radius] yields the following cutlength CL* = 3.627309588 in units of sidelenght: CL=CL*/(2*0.433883739)=4.180047858